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SUMMARY

Unlike randomized experimental studies, investigators do not have control over the treatment assignment
in observational studies. Hence, the treated and control (non-treated) groups may have widely di�erent
distributions of unobserved covariates. Thus, if observational data are analysed as if they had arisen
from a controlled study, the analyses are subject to potential bias. Sensitivity analysis is a technique
for assessing whether the inference drawn from a study could be altered by a moderate ‘imbalance’,
between the distribution of the covariates in di�erent groups. In this paper, we examine the sensitivity
analysis of the test of proportions in 2× 2 tables from a new perspective: ‘could a non-signi�cant result
have occurred because the treated group has a higher prevalence of an unobserved risk factor?’. The
study was motivated by an analysis of the studies concerning with the possible e�ect of spermicide use
on birth defects that were cited in a legal decision. Copyright ? 2003 John Wiley & Sons, Ltd.

1. INTRODUCTION

In his description of the late Prof. Corn�eld’s contributions, Greenhouse [1] emphasized the
importance of his result assessing the potential impact of an omitted variable (OV) on a
positive �nding. Corn�eld’s inequality [2] gave conditions that an OV, U say, had to satisfy
in order that an observed relative risk, R, of the agent under study could be entirely due to
di�erent prevalences of U in the two groups, i.e. the relative risk of U must exceed R and the
ratio of the prevalence of U in the exposed group to that of the unexposed group must exceed
R. Originally, the inequality was used to show that the strong association between tobacco
use and lung cancer was very unlikely to be explained by another factor. Later Gastwirth and
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Greenhouse [3] showed that the methodology was useful in the analysis of data arising in
employment discrimination cases.
Today, epidemiologic studies are admitted as evidence in cases concerning possible harm

caused by drugs or chemical exposures. Often the original inequality is used to assess whether
another agent could have created an association that is shown in studies indicating that the
chemical at issue caused the harm. In our case, the defendant relied on a study that showed
a non-signi�cant increased risk. There were other known or suggested risk factors that were
more prevalent in the controls. This example motivated us to create a ‘reverse’ inequality
that enabled us to examine whether an unobserved covariate might increase a non-signi�cant
risk factor to ‘signi�cance’. Li et al. [4] used a sensitivity analysis for a similar purpose. In
the context of equivalence testing, they rejected the hypothesis that treatment was very much
better than control and found this absence of e�ect to be insensitive to hidden bias.
In Section 2 we review Corn�eld’s original inequality and some useful extensions. The

reverse inequality, which is appropriate when the prevalence of the omitted risk factor is
higher in the control group so that the observed relative risk underestimates the true risk, is
presented in Section 3. Results for e�ects that follow an additive or multiplicative or logistic
model are given and illustrated. Section 4 describes the legal case and study that motivated our
research. Here, the reverse inequality is applied to the case concerning the potential e�ect of
spermicide use on limb reduction defects. In the study, a higher fraction of control mothers
were likely to have been exposed to a previously known risk factor for which data were
not collected. As the observed relative risk was greater than one, we were concerned that
the imbalance between the case and control groups with respect to other risk factors might
have reduced a statistically signi�cant risk to a non-signi�cant one. Thus, the purpose of our
analysis can be regarded as the ‘reverse’ of the original one.

2. CORNFIELD’S INEQUALITY

In response to claims that the relationship between smoking and lung cancer could be ex-
plained by a genetic or other omitted variable, Corn�eld et al. [2] developed an inequality
relating the observed relative risk to the imbalance in prevalence of the omitted variable in
smoking and non-smoking groups and the relative risk of the omitted variable.
Formally, Corn�eld’s inequality involves three binary variables: (1) Y =1 (0) for positive

(negative) response, (2) X =1 (0) for exposed (unexposed) group, (3) U=1 (0) for presence
(absence) of the unobserved variable. Assume that the prevalences of U are f1 =P(U=1|
X =1) in the exposed group and f0 =P(U=1|X =0) in the control group, respectively. Let

�x; u = P(Y =1|X = x; U= u)
�x = P(Y =1|X = x)

be the response probabilities, where x and u equal 0 or 1. If U is omitted, the observed
data are summarized in a single 2× 2 table and we only observe �0 and �1 with relative
risk R∗=�1=�0. Here, �1 and �0 are the probabilities of positive response in the exposed and
control groups, respectively.
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Table I. Limb defects and spermicide usage after last
menstrual period.

Spermicide usage

Limb defect Non-user (0) User (1)

Limb defect (1) a=75 b=75
No limb defect (0) c=2756 d=2208

Total n0 = 2831 n1 = 2283

Source: Table III in Mills et al. [5].

Mills et al. [5] examined the relationship between maternal spermicide use and congenital
malformations. Table I summarizes the number of limb defect(Y ) by spermicide use(X ) from
the study of Mills et al. In Table I, the estimated birth defect fractions are �̂0 = 75

2831 = 0:0265
and �̂1 = 75

2283 = 0:0329. The observed relative risk R
∗=�1=�0 is 1.24. The original analysis

included some additional factors that did not change the estimated relative risk of spermi-
cide use.
Could an unobserved variable U fully explain the observed relative risk, R∗, which appears

to be due to agent X ? If this were the case, then Y would be independent of X given U , i.e.
P(Y =1|X =1; U= u)=P(Y =1|X =0; U= u)=P(Y =1|U= u) for both u=0 and 1. Hence
the relative risk, RU , associated with U is equal to P(Y =1|U=1)=P(Y =1|U=0). Corn�eld
showed that for this to occur, the following two conditions must hold:

RU¿R∗ and f1¿R∗f0

In fact, a slightly stronger condition is given by Gastwirth [6] and Reid [7], i.e.

f1
f0
=R∗ +

R∗ − 1
RU − 1

1
f0

(1)

or equivalently that

f1 =R∗f0 +
R∗ − 1
RU − 1 (2)

In the original application [2], the relative risk of cancer was 5 to 10, so the inequality shows
that in order for another factor U to fully explain the smoking–lung cancer association,
not only would U need to increase an exposed individual’s lung cancer risk �ve-fold, the
proportion of smokers exposed to U needs to be at least �ve times that of non-smokers. The
authors [2] believed that it was not plausible that such an unobserved variable U existed. In
the spermicide data, a variable U with RU =2 and prevalence f0 = 0:2 in the control group
would need to have a prevalence of 0.488 in the user group to explain the increased risk. If
RU =3, the required prevalence would be 0.368.
If one has some knowledge of RU , the e�ect of the omitted variable, (2) implies that the

prevalence of U in the exposed group must exceed R∗f0 by a meaningful amount. If one
has a plausible range of values for f0, then the required value of f1 can be determined.
Alternatively, if one has prior knowledge of f0 as the maximum value of f1 = 1, using (2)
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one �nds that 1¿R∗f0 + (R∗ − 1)=(RU − 1), which implies

RU¿
R∗(1− f0)
1− R∗f0

¿R∗ (3)

Hence, the minimum relative risk RU required for another agent to explain the observed R∗

exceeds R∗.
While Corn�eld et al. [2] preferred the relative risk measure for assessing causality, the risk

di�erence is also useful in public health. If U is to entirely explain the observed di�erence
D∗=P(Y =1|X =1)− P(Y =1|X =0), then Y and X are independent for given U . The risk
di�erence associated with an unobserved variable is calculated as DU =P(Y =1|U=1) −
P(Y =1|U=0). Then one must have (f1 − f0)DU¿D∗, and this implies both DU¿D∗ and
f1 − f0¿D∗ [8].
Sensitivity analysis for assessing causality has been discussed extensively by Rosenbaum

and Rubin [9] and Rosenbaum and Krieger [10] when the sampling variation is also incor-
porated. The relationship between sensitivity analysis and causality is thoroughly explored by
Rosenbaum [11] and Pearl [12].

3. THE REVERSE CORNFIELD INEQUALITY

The reverse Corn�eld inequality enables us to assess whether an unobserved covariate might
be masking a meaningful e�ect. It is especially useful when a study yields a ‘suggestive’
�nding, e.g. the observed value of the estimated risk exceeds 1.50 and the p-value is less
than 0.20.
In this section, we assume that the model for the response probability is

�X;U =H (�+ �X + �U )

where H (·) is a twice di�erentiable function. As in the original inequality, the model as-
sumes there is no interaction between X and U . If the di�erence between the absolute risks
arises from an additive model, �X;U = � + �X + �U . The relative risks are obtained from a
multiplicative model, log(�X;U )= � + �X + �U . The odds ratios are obtained from a logit
model logit(�X;U )= �+ �X + �U: With the exception of the proof of the ‘Reverse Corn�eld
Inequality’ for the multiplicative model, all derivations are presented in the appendix.

3.1. Additive model

For the additive model,

�X;U = �+ �X + �U

so the relevant risk di�erences are:

D∗=�1 − �0; DX ≡ �=�1; u − �0; u; DU ≡ �=�x;1 − �x;0; DX;U =�1;1 − �0;0
Here D∗ is the observed risk di�erence, DX is the true risk di�erence of the agent X , DU is
the risk di�erence due to U . Under this model, the omitted variable U interacts additively
with the agent X , i.e. DX;U =DX +DU .

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:3383–3401



THE USE OF THE ‘REVERSE CORNFIELD INEQUALITY’ 3387

Proposition 3.1
The observed risk di�erence D∗ and true risk di�erence DX of the agent are related by

D∗=DU (f1 − f0) +DX (4)

In the usual application, f1 is assumed to exceed f0, so D∗ overestimates the e�ect of X . If
f0¿f1, D∗ will underestimate the true risk DX .

3.2. Multiplicative model

Corn�eld [2] originally considered a multiplicative model

log(�X;U )= �+ �X + �U (5)

and that the true value of �=0. Because U was omitted, however, the estimate of �∗ from
the �tted model log(�X )= �∗ + �∗X was greater than 0.
In the multiplicative model (5), the measures of relative risk are:

R∗=
�1
�0
; RX ≡ e�= �1; u

�0; u
; RU ≡ e�= �x;1

�x;0
; RX;U =

�1;1
�0;0

The agents X;U act multiplicatively, i.e. RX;U =RXRU .

Lemma 3.1
Let a; b; c; d¿0,

g(x)=
ax + b
cx + d

is an increasing (decreasing) function of x if and only if ad− bc¿(¡)0.
Proof

g′(x)=
ad− bc
(cx + d)2

¿0 if and only if ad− bc¿0

Proposition 3.2 (Reverse Corn�eld inequality)
If 0¡f1¡f0¡1 and RU¿1, we have

16
RX
R∗6

f0
f1

and
RX
R∗6RU (6)

Proof

R∗ =
�1
�0
=
�1;1P(U=1|X =1) + �1;0P(U=0|X =1)
�0;1P(U=1|X =0) + �0;0P(U=0|X =0)

=

�1;1
�0;0

f1 +
�1;0
�0;0

(1− f1)
�0;1
�0;0

f0 +
�0;0
�0;0

(1− f0)

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:3383–3401



3388 B. YU AND J. L. GASTWIRTH

=
f1RURX + (1− f1)RX
f0RU + (1− f0)

= RX
f1RU + (1− f1)
f0RU + (1− f0) (7)

When f0¿f1, the R.H.S. of (7) is a decreasing function of RU by Lemma 3.1 and attains its
minimum (maximum) when RU →∞ (RU =1), hence,

f1
f0
¡
R∗

RX
61

Setting �=RX =R∗, the above inequality implies that �f1¡f0. From (7), we obtain

RU =1+
�− 1
f0 − �f1¿1 +

�− 1
f0

¿�

3.3. A logit model

Now assume that the response probability follows a logit model, i.e.

log
(

�X;U
1− �X;U

)
= �+ �X + �U

The true odds ratios due to the exposure X and the omitted variable U are

�X ≡ ORX |U = �1; u(1− �0; u)�0; u(1− �1; u) = e
�; u=0; 1 (8)

�U ≡ ORU |X =
�x;1(1− �x;0)
�x;0(1− �x;1) = e

�; x=0; 1 (9)

where � and � are the log-odds ratios.
If the variable U is omitted from the analysis, then the observed odds ratio is

�∗=
�1=(1− �1)
�0=(1− �0) = e

�∗ (10)

where

�0 =P(R=1|X =0)= e�+�

1 + e�+�
f0 +

e�

1 + e�
(1− f0) (11)

�1 =P(R=1|X =1)= e�+�+�

1 + e�+�+�
f1 +

e�+�

1 + e�+�
(1− f1) (12)
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Proposition 3.3
Let � be the (baseline) response probability when both X and U equal 0, i.e. �=e�=(1+e�),
and the corresponding odds is �=e�. The observed odds ratios �∗ and the true odds ratio
�X are related by a factor �,

� ≡ �X
�∗ =

(1− f0) + �U (f0 + �)
(1− f1) + �U (f1 + � · �X ) ×

1 + � · �X [(1− f1)�U + f1]
1 + �[(1− f0)�U + f0] (13)

Corollary 3.4
The ratio �=�X =�∗ satis�es the following bounds:

1=�U6�6�U if �U¿1

1=�U¿�¿�U if �U61

Corollary 3.5
Under the rare disease assumption, i.e. �→ 0 or equivalently �→−∞, then the observed odds
ratio �∗ can be approximated as

�∗=�X
(1− f1) + �Uf1
(1− f0) + �Uf0 (14)

Under the rare disease assumption, the odds ratio approximates the relative risk, hence (14)
is equivalent to equation (7).

Corollary 3.6
When �X¿1 and f ≡ f0 =f1,

�X¿�∗

unless �X =1 or �U =1 or f=0 or f=1.

Comment: This result shows that if �X¿1, even when U is balanced between the exposed
and control groups, the marginal odds ratio �∗ is always less than �X . Similarly, when �X¡1,
we have �X¡�∗¡1. Gail et al. [13] showed that in randomized studies, when the prevalences
of relevant variables should be nearly equal in both groups, only the parameters in linear and
log-linear models have asymptotically unbiased estimators. Especially, they noted that even
in the ‘balanced’ case, the parameter estimators of a logistic model are biased towards zero.
Our results are consistent with their �nding.
In the following, we assume that �X¿1. Tables II and III present �, the ratio of �X to �∗

for di�erent values of �(= log�X ) and �(= log�U ) when �=0:1 and 0:5. For example, when
�=0:1, �X =2:7 and �=−1, Table II shows that �=1:014. When the common prevalence f
is near 0 or 1, the ratio � is close to 1. In both tables, as the e�ect of exposure �X increases,
the ratio � increases, i.e. the underestimation bias increases with �X . The ratio � also increases
as the absolute value of log�U increases.
Figure 1 presents a three-dimensional plot of the relationship between the relative bias �

and log�X ; log�U when the prevalence f=0:5 and the baseline response probability �=0:5.

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:3383–3401
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Table II. The ratio of �X to �∗ when the baseline probability �=10 per cent and U is equally prevalent.

�= log(�U )

� f � �X =e� −2 −1:5 −1 −0:5 0:5 1 1.5 2

0.1 0.10 0.5 1.6 1.005 1.004 1.002 1.001 1.002 1.009 1.025 1.051
0.1 0.25 0.5 1.6 1.012 1.009 1.006 1.002 1.003 1.017 1.043 1.085
0.1 0.50 0.5 1.6 1.021 1.016 1.009 1.003 1.004 1.019 1.047 1.090
0.1 0.75 0.5 1.6 1.025 1.016 1.008 1.002 1.003 1.012 1.031 1.060
0.1 0.90 0.5 1.6 1.018 1.010 1.005 1.001 1.001 1.006 1.014 1.028

0.1 0.10 1.0 2.7 1.013 1.010 1.006 1.002 1.004 1.020 1.053 1.104
0.1 0.25 1.0 2.7 1.031 1.024 1.014 1.005 1.008 1.037 1.096 1.184
0.1 0.50 1.0 2.7 1.055 1.040 1.022 1.007 1.010 1.044 1.108 1.207
0.1 0.75 1.0 2.7 1.063 1.041 1.021 1.006 1.007 1.029 1.072 1.141
0.1 0.90 1.0 2.7 1.044 1.026 1.011 1.003 1.003 1.013 1.033 1.066

0.1 0.10 1.5 4.5 1.026 1.020 1.012 1.004 1.007 1.032 1.081 1.153
0.1 0.25 1.5 4.5 1.061 1.046 1.027 1.009 1.013 1.061 1.153 1.287
0.1 0.50 1.5 4.5 1.107 1.076 1.041 1.012 1.017 1.074 1.181 1.342
0.1 0.75 1.5 4.5 1.119 1.076 1.037 1.010 1.012 1.051 1.125 1.243
0.1 0.90 1.5 4.5 1.082 1.046 1.021 1.005 1.005 1.023 1.058 1.115

Table III. The ratio of �X to �∗ when the baseline probability �=50 per cent and U is
equally prevalent.

�= log(�U )

� f � �X =e� −2 −1:5 −1 −0:5 0.5 1 1.5 2

0.5 0.10 0.5 1.6 1.031 1.021 1.011 1.003 1.003 1.009 1.016 1.022
0.5 0.25 0.5 1.6 1.067 1.044 1.022 1.006 1.005 1.018 1.035 1.049
0.5 0.50 0.5 1.6 1.098 1.062 1.030 1.008 1.007 1.026 1.052 1.078
0.5 0.75 0.5 1.6 1.089 1.052 1.023 1.006 1.006 1.022 1.047 1.077
0.5 0.90 0.5 1.6 1.051 1.027 1.012 1.003 1.003 1.011 1.026 1.048

0.5 0.10 1.0 2.7 1.074 1.047 1.022 1.006 1.005 1.015 1.027 1.037
0.5 0.25 1.0 2.7 1.155 1.097 1.046 1.011 1.010 1.033 1.060 1.085
0.5 0.50 1.0 2.7 1.219 1.132 1.061 1.015 1.013 1.048 1.093 1.139
0.5 0.75 1.0 2.7 1.188 1.105 1.046 1.011 1.011 1.040 1.086 1.141
0.5 0.90 1.0 2.7 1.102 1.054 1.022 1.005 1.005 1.021 1.049 1.089

0.5 0.10 1.5 4.5 1.126 1.076 1.034 1.008 1.006 1.020 1.035 1.047
0.5 0.25 1.5 4.5 1.260 1.154 1.069 1.016 1.013 1.043 1.078 1.110
0.5 0.50 1.5 4.5 1.354 1.202 1.089 1.021 1.018 1.064 1.124 1.183
0.5 0.75 1.5 4.5 1.286 1.154 1.065 1.016 1.014 1.055 1.116 1.190
0.5 0.90 1.5 4.5 1.148 1.076 1.031 1.007 1.007 1.029 1.067 1.122

Although the ratio � between the true odds ratio �X and the marginal odds ratio �∗ is small
in most situations, it can be substantial. For example, � can reach 1.992 when log(�X )=2:5
and log(�U )=−2:5.
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Figure 1. Ratio �=�X =�∗ when f0 =f1 = 0:5 and �=0:5.

4. APPLICATION TO THE STUDY OF THE SPERMICIDE
EFFECT ON BIRTH DEFECTS

Motivated by criticism of a legal decision ‘Wells vs Ortho Pharmaceutical Corp.’, Gastwirth
[14] examined the studies discussed in the decision to assess whether the critics, who claimed
that the decision and its a�rmation by the Court of Appeals showed that the legal system was
unable to deal with scienti�c evidence, was justi�ed. The decision found that limb defects of
the baby were results of the mother’s exposure to a spermicide after her last menstrual period
(LMP) at the time the limb buds were formed. The court also found that there was su�cient
evidence from two studies prior to the mother’s use of the drug that the defendant should
have warned of an increased risk of limb defects. Data from studies cited in the opinion
are presented in Reference [6] and the criticisms, subsequent studies and legal opinions are
reviewed in Reference [14].
The �rst published study [15] that suggested spermicide was associated with limb defects

(RX =2:98) also indicated that tranquilizers were a risk factor with a similar relative risk. A
later study [16], which apparently was not submitted as evidence in the trial, found a relative
risk of 3.7 for tranquilizer use and smoking for all birth defects.
As most of the critics relied on the study of Mills et al. [5] that did not �nd a signi�cant

increased risk, we examine its sensitivity to the fact that it did not include data on tranquilizer
use by the mothers. Table I presented the basic risk data from this study indicating a relative
risk of 1.24. Mills et al. noted that in the study population, spermicide users were signi�cantly
older, of higher parity and more educated than users of other methods (all P¡0:0001). They
drank less alcohol (P¡0:0001) and smoked fewer cigarettes (P¡0:0001).
Although Mills et al. [5] did not present the smoking prevalences in both groups, another

study in the same era [17] found that 31 per cent of spermicide users past their last menstrual
period (LMP) smoked while 39 per cent of non-users did. We assume that the proportion

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:3383–3401
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Table IV. The true relative risk RX for di�erent values
of (RU ; f0; f1) when R∗=1:241.

f0 f1 RU RX

0.40 0.30 2.0 1.316
0.40 0.30 3.0 1.363
0.40 0.30 4.0 1.395
0.40 0.30 5.0 1.418

0.32 0.30 3.7 1.277
0.34 0.30 3.7 1.314
0.36 0.30 3.7 1.351
0.38 0.30 3.7 1.388
0.40 0.30 3.7 1.425

0.40 0.38 3.7 1.273
0.40 0.36 3.7 1.308
0.40 0.34 3.7 1.345
0.40 0.32 3.7 1.384
0.40 0.30 3.7 1.425

of tranquilizer use in the smoking group equals that of the non-smoking group and will use
these results as a basis of our sensitivity analysis.
Because the joint use of tranquilizer and cigarettes U is omitted from the original analysis,

we only observed the marginal relative risk R∗=�1=�0 and estimated it by R̂∗= b=n1=a=n0 in
Table I. By the Reverse Corn�eld Inequality (7), the (observed) marginal relative risk R∗ and
the relative risk RX of spermicide are related by a factor �, i.e. RX = �R∗, where

�=
f0RU + (1− f0)
f1RU + (1− f1) (15)

Table IV lists the true values of the relative risk RX for di�erent values of (RU ;f0; f1). We
see that when f0¿f1, the true relative risk RX exceed the observed relative risk 1.241 and
the di�erence between RX and R∗ increases with RU . When f0 = 0:40, f1 = 0:30 and RU =3:7,
the true relative risk RX would be 1.425.
For testing whether spermicides are teratogenic (cause a birth defect), i.e.

H0:RX =1 vs H1:RX¿1 (16)

the test statistic is based on observed relative risk R̂∗, i.e. T= log(R̂∗). If we assume that
��=�0 =�1 under the null, the rejection region is

T= log(R̂∗)¿Z1−��0

where (�0)2 = (1 − ��)= ��((1=n0) + (1=n1)) and �� can be estimated by �p=(a + b)=(n0 + n1).
From Table I, the observed relative risk R̂∗ is 1.241, the p-value for a one-sided test is 0.11.
This closely agrees with the two-sided p-value of 0.21 reported in Table III by Mills et al.
[5]. For a one-sided (two-sided) test with � level 0.05, the rejection region is R̂∗¿1:305
(|R̂∗|¿1:373).
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Because of the imbalance in smoking between the spermicide users and non-users, under
H0:RX =1, �1 no longer equals �0. Indeed, (15) implies that when f0¿f1 and RU¿1, the
expected value of the observed relative risk R∗=1=�¡1. For convenience, 1=� will be denoted
by k. The imbalance of U also a�ects the variance of the null distribution of R̂∗, which is
given by the following proposition.

Proposition 4.1
Under the null, the true variance of log(R̂∗) is

(�∗0 )
2 =V ∗(log(R̂∗)|H0)= 1− �0n0�0

+
1− k�0
n1k�0

(17)

where �0 can be estimated by maximizing the product-binomial likelihood.

Since the variable U was omitted from the analysis, the test based on log(R̂∗) is not
unbiased. From (15), log(R∗) and log(RX ) are related by

�= log(R∗)− log(RX )= log(k)= log
{
f1RU + (1− f1)
f0RU + (1− f0)

}

Under H0:RX =1, the test statistic T= log(R̂∗)∼N(�; (�∗0 )2). For the observed relative risk
r=1:24, the true p-value adjusting for the imbalance of U between the groups is

p=P(T¿ log(r)|H0)=P
(
log(R̂∗)− �

�∗0
¿
log(r)− �

�∗0

)
=1−�

(
log(r)− �

�∗0

)

The change in the p-values for di�erent values of the relative risk of U and di�erent preva-
lences of U in the exposed and control groups are displayed in Figure 2. The initial values
for the three parameters are RU =3:7, f0 = 39 per cent and f1 = 31 per cent. In the sensitivity
analysis, we change the value of one parameter at a time. From Figure 2(a), we see that as
the e�ect of U , RU , increases, the p-value decreases. If RU =5, the one-sided p-value de-
clines to 0.02. In Figure 2(b), when f1 = 0.31, as f0 increases from 0.31 to 0.41, the p-value
decreases from its original value 0.11 to 0.018 when RU =3:7. Figure 2(c) shows a similar
pattern as the prevalence of U in the exposed group declines.
The above sensitivity analysis makes the unrealistic assumption that all smokers used tran-

quilizers. As other studies reported that spermicide users tended to drink less as well as smoke
less than non-users, they probably were more health conscious than non-users. Thus, it is rea-
sonable to assume that a smaller fraction of spermicide users who smoked used tranquilizers
too. In Table V we assume that between one-fourth to one-half of the smokers used tranquil-
izers in the control group but the probability that a spermicide user took tranquilizers was
less than that of the control group. Notice that in most cases an imbalance in the prevalence
of smoking and tranquilizer use could have created a su�cient underestimate of the risk of
spermicide use to mask a statistically signi�cant result if their joint risk exceeds 3.0.
The size � of the test also will be a�ected by the imbalance in U . The true signi�cance

level of the test is

�∗=P(T¿Z1−��0|H0)=P
(
log(R̂∗)− �

�∗0
¿
Z1−��0 − �

�∗0

)
=1−�

(
Z1−��0 − �

�∗0

)
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Figure 2. The true p-value of the test H0:RX =1 vs H1:RX¿1 (Initial values
RU =3:7; f0 = 39 per cent, f1 = 31 per cent): (a) RU changes; (b) f0 changes;

and (c) f1 changes.

Table V. The true relative risk RX for di�erent values of
(RU ; f0; f1) when a smaller percentage of exposed individuals

have the omitted risk factor.

RX value RU

f0 f1 2 3 4 5

0.20 0.15 1.294 1.335 1.368 1.395
0.20 0.10 1.353 1.447 1.526 1.594
0.20 0.05 1.417 1.578 1.725 1.860

0.15 0.10 1.296 1.343 1.383 1.417
0.15 0.075 1.327 1.402 1.468 1.526

0.10 0.075 1.269 1.294 1.316 1.335
0.10 0.05 1.299 1.353 1.402 1.447
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Figure 3. Signi�cance level of the test H0:RX =1 vs H1:RX¿1 (1: f0 = 0:1; f1 = 0:075;
2:f0 = 0:2; f1 = 0:1; 3:f0 = 0:4; f1 = 0:3).

Figure 3 plots the signi�cance level as a function of RU for di�erent prevalence pairs. The
lowest curve (3) shows the � level for f0 = 0:4; f1 = 0:3. The upper two curves show the �
levels when only one-half or one-quarter of the smokers use tranquilizers. We can see that the
signi�cance level of the test is less than 0.05 when the omitted variable U is more prevalent
in the control group. Thus, the original study actually used a lower value of � than 0.05. As
the e�ect of U increases, the signi�cance level � of the test decreases. The � level decreases
faster when f0 = 0:4 and f1 = 0:3 because the di�erence between f0 and f1 is larger than in
the other cases, f0 = 0:2; f1 = 0:15 or f0 = 0:1; f1 = 0:075. When RU =3:7, all the one-sided
�-levels are below 0.03.
Also, under the alternative H1:RX¿1, the true power of the test will change to

1− �∗=P(T6Z1−��0|H1)=1−�
(
Z1−� − (log(RX )− �)=�0

�1=�0

)
(18)

The variance of log(R̂∗) under the alternative is given by

(�1)2 =V (log(R̂∗)|H1)= 1− �0n0�0
+
1− �1
n1�1

where the estimates are p̂i0 and p̂i1 = b=n1.
Figure 4 presents the power of the test under the same conditions as in Figure 3. The

original power of the test under the alternative H1:RX =2 is 0.996. It decreases to 0.945
when RU =4:5 and f0 = 0:4, f1 = 0:3. The power under the alternative H1:RX =1:5 decreases
much more, from 0.81 to 0.50. Hence, omitting the confounder U makes the test invalid as
the � is lower than 0.05. Moreover, the power decreases too. In Table VI, we present the true
signi�cance level and power of the test for RU =3:7 under di�erent prevalences f0 and f1.
It is interesting to explore the implication of our sensitivity analysis of the non-signi�cant

result reported by Mills et al. [5]. When the omitted variable U has an RU of 3.7, the �
level is compromised. When f0 = 0:4 and f1 = 0:3, a one-sided 0.05 level test has actual level
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Figure 4. The true power of the test H0:RX =1 vs H1:RX¿1 (1:f0 = 0:1; f1 = 0:075;
2:f0 = 0:2; f1 = 0:15; 3:f0 = 0:4; f1 = 0:3).

Table VI. The e�ect of an omitted variable with RU =3:7 on the
� level of the test H0:RX =1 vs H1:RX¿1 and the power under

alternatives H1:RX =1:5 and H1:RX =2.

Power

f0 f1 � level H1:RX =1:5 H1:RX =2:0

0.4 0.40 0.050 0.807 0.996
0.4 0.35 0.019 0.673 0.987
0.4 0.30 0.006 0.501 0.963
0.4 0.25 0.001 0.316 0.905
0.4 0.20 0.000 0.158 0.784

0.2 0.20 0.050 0.807 0.996
0.2 0.15 0.013 0.616 0.981
0.2 0.10 0.002 0.370 0.927
0.2 0.05 0.000 0.151 0.776

0.1 0.10 0.050 0.807 0.996
0.1 0.08 0.028 0.724 0.991
0.1 0.06 0.014 0.623 0.982
0.1 0.04 0.006 0.507 0.965
0.1 0.02 0.003 0.385 0.933

0.006 and if f0 = 0:2, f1 = 0:15, the actual level is 0.013. Similar results hold for two-sided
tests.
While the e�ect on the power of a study to detect a relative risk of 2.0 is not severely

compromised, it does fall below the original value (greater than) 0.99 given by Mills et al.
[5]. Courts have accepted relative risk as low as 1.55 [18]. Under the alternative H1:RX =1:5,
the power of the test falls from the original value 0.807 when the omitted factor is bal-
anced in the two groups to less than 0.600 when f1¡f0=2 for the prevalences in
Table VI.
If RU =3:7 and f0 = 0:39; f1 = 0:31, Figure 2(b) yields a two-sided p-value of 0.053. If RU

were only 2.6, the two-sided p-value would rise to 0.1. If f0 = 0:2, f1 = 0:15 and RU =3:7, the
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two-sided p-value would be 0.12. All these p-values are not far from signi�cance. Moreover,
there is controversy in the literature as to the e�ect of smoking itself on limb defects and
the study by Smith et al. [15] also indicated that a threatened abortion during pregnancy is
a risk factor. Unfortunately no information about the relative prevalences of this risk in the
user and non-user groups were reported in the Mills et al. [5] study, so we could not examine
its potential impact. Thus, our analysis reinforces the recommendation of Cordero and Layde
[19] that the relationship between spermicide use and birth defects deserves further studies.
These studies should incorporate tranquilizer use, smoking pattern and other risk factors in
order to reach a sound conclusion.

5. DISCUSSION

The use of the reverse Corn�eld inequality allows statisticians to examine the potential e�ect
of omitted variables on non-signi�cant �ndings when those risk factors are likely to be more
prevalent in the control group. The analysis of the spermicide study illustrates that in this
situation, an omitted factor that increases the risk under study leads to a test with less than
the prespeci�ed signi�cance level � with a consequent decrease in power. This makes it more
di�cult to uncover a true risk factor. In practice, this suggests that the data underlying non-
signi�cant but suggestive results (p¡0:20) should be carefully examined to answer whether
other risk factors could be more prevalent in the control group.

APPENDIX

Proof of Proposition 3.1
Note that

�1 =P(Y =1|X =1)= �1;1f1 + �1;0(1− f1)
�0 =P(Y =1|X =0)= �0;1f0 + �0;0(1− f0)

and

DX = �1;0 − �0;0 =�1;1 − �0;1
DU = �0;1 − �0;0 =�1;1 − �1;0

Hence the observed risk di�erence

D∗ = {(�1;1 − �0;0)f1 + (�1;0 − �0;0)(1− f1)} − {(�0;1 − �0;0)f0 + (�0;0 − �0;0)(1− f0)}
=DX;Uf1 +DX (1− f1)−DUf0
= (DX +DU )f1 +DX (1− f1)−DUf0
=DX +DU (f1 − f0)
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Proof of Proposition 3.3
By (11) and (12),

�0
1− �0 =

e�+�

1 + e�+�
f0 +

e�

1 + e�
(1− f0)

1
1 + e�+�

f0 +
1

1 + e�
(1− f0)

�1
1− �1 =

e�+�+�

1 + e�+�+�
f1 +

e�+�

1 + e�+�
(1− f1)

1
1 + e�+�+�

f1 +
1

1 + e�+�
(1− f1)

so that

�0
1− �0 = e

�× e�(1 + e�)f0 + (1 + e�+�)(1− f0)
(1 + e�)f0 + (1 + e�+�)(1− f0)

= e�× (1− f0) + e�(f0 + e�)
1 + e�[(1− f0)e� + f0]

�1
1− �1 = e

�+�× e�(1 + e�+�)f1 + (1 + e�+�+�)(1− f1)
(1 + e�+�)f1 + (1 + e�+�+�)(1− f1)

= e�+�× (1− f1) + e�(f1 + e�+�)
1 + e�+�[(1− f1)e� + f1]

Substituting �1=(1− �1) and �0=(1− �0) into (10), we obtain

�∗=�X × (1− f1) + e
�(f1 + e�+�)

(1− f0) + e�(f0 + e�) × 1 + e�[(1− f0)e� + f0]
1 + e�+�[(1− f1)e� + f1] (A1)

Rewriting (A1) in terms of the odds ratios �X ; �U and � yields

� ≡ �X
�∗ =

(1− f0) + �U (f0 + �)
(1− f1) + �U (f1 + � · �X ) ×

1 + � · �X [(1− f1)�U + f1]
1 + �[(1− f0)�U + f0]

Proof of Corollary 3.5
Let

g(	; f)=
(1− f) + e�(f + e	)
1 + e	[(1− f)e� + f] =

1 + e	+� + (e� − 1)f
1 + e�[1− (e� − 1)f]

Then by (A1),

�∗=�X
g(�+ �;f1)
g(�; f0)
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If �U =e�¿1, g(	; f) is an increasing function of f. Thus, �∗ attains its maximum when
f1 = 1 and f0 = 0, and the value is �X · �U by (A1). It attains the minimum �X =�U when
f1 = 0 and f0 = 1.
When �U =e�61, g(	; f) is a decreasing function of f. �∗ attains its minimum value,

�X · �U , at f1 = 0; f0 = 1, and its minimum �X =�U at f1 = 1; f0 = 0.

Proof of Corollary 3.5
When �→−∞, the baseline odd �=e�→ 0. From equation (13),

�=
�X
�∗ =

(1− f0) + �Uf0
(1− f1) + �Uf1

Proof of Corollary 3.6
When f ≡ f0 =f1, then �=�X =�∗=A=B, where

A= [(1− f) + �U (f + e�)]× [1 + e��X ((1− f)�U + f)]
B= [(1− f) + �U (f + e��X )]× [1 + e�((1− f)�U + f)]

Because

A− B=�U e� + (1− f + �Uf)e��X [(1− f)�U + f]
−�U e��X + (1− f + �Uf)e�[(1− f)�U + f]

= e�(�X − 1){(1− f + �Uf)[(1− f)�U + f]− �U}
= e�(�X − 1)(�U − 1)2f(1− f)¿0 (A2)

Hence �=�X =�∗=A=B¿1.

Proof of Proposition 4.1
The unconditional likelihood of the two proportions (�0; �1) in a 2× 2 table is

Lu(�0; �1)=B(a; n0; �0)B(b; n1; �1)=
(n0
a

)
�a0(1− �0)n0−a

(n1
b

)
�b1(1− �1)n1−b (A3)

Let R̂∗=(b=n1)=(a=n0). To improve the applicability of the normal approximation log(R̂∗) is
usually used.
Because a∼Bin(n0; �0) and b∼Bin(n1; �1) are independent, by Central Limit Theorem,

p0 = a=n0∼N(�0; �0(1−�0)=n0) and p1 = b=n1∼N(�1; �1(1−�1)=n1). As log(R̂∗)= log(p1)−
log(p0), V (log(R̂∗))=V (log(p1))+V (log(p0)). By the 
-method, the variance of log(p0) is
given by

V (log(p0))≈
[
d log(�)
�

∣∣∣∣
�= �0

]2
V (p0)=

[
1
�20

]
�0(1− �0)

n0
=
1− �0
n0�0
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Likewise, the variance V (log(p1))≈ (1 − �1)=(n1�1); hence, the variance of log(R̂∗) is (1 −
�0)=n0�0 + (1− �1)=n1�1:
If we assume �0 =�1 =�c, �c is estimated by �p=(a + b)=(n0 + n1), then V̂ (log(R̂∗))=

(1=n0+1=n1) �p=(1− �p). Under the alternative, �0 and �1 are independent and are estimated by
p0 = a=n0 and p1 = b=n1. Hence V̂ (log(R̂∗))= (1−p0)=n0p0+(1−p1)=n1p1. If a confounding
risk factor U is omitted, from (7), k=�1=�0 �=0 under the null H0:RX =1. The variance
of log(R̂∗) is (1 − �0)=n0�0 + (1 − k�0)=kn1�0, where the MLE �̂0 of �0 is the solution to
equation

d log Lu(�0; k�0)
d�0

=
a
�0

− n0 − a
1− �0 +

kb
k�0

− k(n1 − b)
1− k�0 = 0

This reduces quadratic equation

g(�0)= k(n0 + n1)�20 − [k(a+ n1) + (b+ n0)]�0 + (a+ b)=0

In our analysis k=�1=�0¡1, hence g(0)= a+ b¿0 and g(1)= (k − 1)(n0 − a)¡0. There is
a unique solution �̂0 ∈ (0; 1).
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